Рассчитать высоту треугольника со сторонами 110, 105 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 105 + 56}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-110)(135.5-105)(135.5-56)}}{105}\normalsize = 55.1332912}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-110)(135.5-105)(135.5-56)}}{110}\normalsize = 52.6272325}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-110)(135.5-105)(135.5-56)}}{56}\normalsize = 103.374921}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 105 и 56 равна 55.1332912
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 105 и 56 равна 52.6272325
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 105 и 56 равна 103.374921
Ссылка на результат
?n1=110&n2=105&n3=56
Найти высоту треугольника со сторонами 147, 139 и 70
Найти высоту треугольника со сторонами 145, 98 и 57
Найти высоту треугольника со сторонами 142, 105 и 64
Найти высоту треугольника со сторонами 137, 123 и 71
Найти высоту треугольника со сторонами 74, 58 и 29
Найти высоту треугольника со сторонами 133, 109 и 91
Найти высоту треугольника со сторонами 145, 98 и 57
Найти высоту треугольника со сторонами 142, 105 и 64
Найти высоту треугольника со сторонами 137, 123 и 71
Найти высоту треугольника со сторонами 74, 58 и 29
Найти высоту треугольника со сторонами 133, 109 и 91