Рассчитать высоту треугольника со сторонами 110, 107 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 107 + 62}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-110)(139.5-107)(139.5-62)}}{107}\normalsize = 60.1778769}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-110)(139.5-107)(139.5-62)}}{110}\normalsize = 58.5366621}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-110)(139.5-107)(139.5-62)}}{62}\normalsize = 103.855368}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 107 и 62 равна 60.1778769
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 107 и 62 равна 58.5366621
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 107 и 62 равна 103.855368
Ссылка на результат
?n1=110&n2=107&n3=62
Найти высоту треугольника со сторонами 137, 100 и 62
Найти высоту треугольника со сторонами 149, 146 и 137
Найти высоту треугольника со сторонами 111, 101 и 87
Найти высоту треугольника со сторонами 79, 66 и 16
Найти высоту треугольника со сторонами 143, 99 и 81
Найти высоту треугольника со сторонами 96, 92 и 36
Найти высоту треугольника со сторонами 149, 146 и 137
Найти высоту треугольника со сторонами 111, 101 и 87
Найти высоту треугольника со сторонами 79, 66 и 16
Найти высоту треугольника со сторонами 143, 99 и 81
Найти высоту треугольника со сторонами 96, 92 и 36