Рассчитать высоту треугольника со сторонами 110, 107 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 107 + 85}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-110)(151-107)(151-85)}}{107}\normalsize = 79.2546817}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-110)(151-107)(151-85)}}{110}\normalsize = 77.0931904}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-110)(151-107)(151-85)}}{85}\normalsize = 99.7676581}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 107 и 85 равна 79.2546817
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 107 и 85 равна 77.0931904
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 107 и 85 равна 99.7676581
Ссылка на результат
?n1=110&n2=107&n3=85
Найти высоту треугольника со сторонами 68, 60 и 32
Найти высоту треугольника со сторонами 128, 109 и 24
Найти высоту треугольника со сторонами 89, 78 и 62
Найти высоту треугольника со сторонами 82, 82 и 59
Найти высоту треугольника со сторонами 142, 139 и 96
Найти высоту треугольника со сторонами 85, 75 и 63
Найти высоту треугольника со сторонами 128, 109 и 24
Найти высоту треугольника со сторонами 89, 78 и 62
Найти высоту треугольника со сторонами 82, 82 и 59
Найти высоту треугольника со сторонами 142, 139 и 96
Найти высоту треугольника со сторонами 85, 75 и 63