Рассчитать высоту треугольника со сторонами 110, 109 и 94

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 109 + 94}{2}} \normalsize = 156.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156.5(156.5-110)(156.5-109)(156.5-94)}}{109}\normalsize = 85.2852562}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156.5(156.5-110)(156.5-109)(156.5-94)}}{110}\normalsize = 84.5099357}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156.5(156.5-110)(156.5-109)(156.5-94)}}{94}\normalsize = 98.8946056}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 109 и 94 равна 85.2852562
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 109 и 94 равна 84.5099357
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 109 и 94 равна 98.8946056
Ссылка на результат
?n1=110&n2=109&n3=94