Рассчитать высоту треугольника со сторонами 110, 109 и 97

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 109 + 97}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-110)(158-109)(158-97)}}{109}\normalsize = 87.3606019}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-110)(158-109)(158-97)}}{110}\normalsize = 86.5664146}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-110)(158-109)(158-97)}}{97}\normalsize = 98.168099}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 109 и 97 равна 87.3606019
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 109 и 97 равна 86.5664146
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 109 и 97 равна 98.168099
Ссылка на результат
?n1=110&n2=109&n3=97