Рассчитать высоту треугольника со сторонами 110, 65 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 65 + 64}{2}} \normalsize = 119.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119.5(119.5-110)(119.5-65)(119.5-64)}}{65}\normalsize = 57.0173642}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119.5(119.5-110)(119.5-65)(119.5-64)}}{110}\normalsize = 33.6920789}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119.5(119.5-110)(119.5-65)(119.5-64)}}{64}\normalsize = 57.9082605}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 65 и 64 равна 57.0173642
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 65 и 64 равна 33.6920789
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 65 и 64 равна 57.9082605
Ссылка на результат
?n1=110&n2=65&n3=64
Найти высоту треугольника со сторонами 100, 95 и 77
Найти высоту треугольника со сторонами 139, 130 и 20
Найти высоту треугольника со сторонами 104, 92 и 64
Найти высоту треугольника со сторонами 90, 71 и 30
Найти высоту треугольника со сторонами 141, 124 и 61
Найти высоту треугольника со сторонами 146, 97 и 84
Найти высоту треугольника со сторонами 139, 130 и 20
Найти высоту треугольника со сторонами 104, 92 и 64
Найти высоту треугольника со сторонами 90, 71 и 30
Найти высоту треугольника со сторонами 141, 124 и 61
Найти высоту треугольника со сторонами 146, 97 и 84