Рассчитать высоту треугольника со сторонами 110, 69 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 69 + 57}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-110)(118-69)(118-57)}}{69}\normalsize = 48.6888884}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-110)(118-69)(118-57)}}{110}\normalsize = 30.5412118}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-110)(118-69)(118-57)}}{57}\normalsize = 58.9391807}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 69 и 57 равна 48.6888884
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 69 и 57 равна 30.5412118
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 69 и 57 равна 58.9391807
Ссылка на результат
?n1=110&n2=69&n3=57
Найти высоту треугольника со сторонами 148, 125 и 95
Найти высоту треугольника со сторонами 130, 103 и 49
Найти высоту треугольника со сторонами 143, 119 и 64
Найти высоту треугольника со сторонами 113, 108 и 94
Найти высоту треугольника со сторонами 115, 92 и 56
Найти высоту треугольника со сторонами 150, 119 и 83
Найти высоту треугольника со сторонами 130, 103 и 49
Найти высоту треугольника со сторонами 143, 119 и 64
Найти высоту треугольника со сторонами 113, 108 и 94
Найти высоту треугольника со сторонами 115, 92 и 56
Найти высоту треугольника со сторонами 150, 119 и 83