Рассчитать высоту треугольника со сторонами 110, 77 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 77 + 64}{2}} \normalsize = 125.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125.5(125.5-110)(125.5-77)(125.5-64)}}{77}\normalsize = 62.5655706}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125.5(125.5-110)(125.5-77)(125.5-64)}}{110}\normalsize = 43.7958994}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125.5(125.5-110)(125.5-77)(125.5-64)}}{64}\normalsize = 75.2742021}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 77 и 64 равна 62.5655706
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 77 и 64 равна 43.7958994
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 77 и 64 равна 75.2742021
Ссылка на результат
?n1=110&n2=77&n3=64
Найти высоту треугольника со сторонами 107, 99 и 47
Найти высоту треугольника со сторонами 120, 94 и 27
Найти высоту треугольника со сторонами 146, 131 и 93
Найти высоту треугольника со сторонами 102, 100 и 95
Найти высоту треугольника со сторонами 114, 84 и 43
Найти высоту треугольника со сторонами 133, 110 и 37
Найти высоту треугольника со сторонами 120, 94 и 27
Найти высоту треугольника со сторонами 146, 131 и 93
Найти высоту треугольника со сторонами 102, 100 и 95
Найти высоту треугольника со сторонами 114, 84 и 43
Найти высоту треугольника со сторонами 133, 110 и 37