Рассчитать высоту треугольника со сторонами 110, 83 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 83 + 39}{2}} \normalsize = 116}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116(116-110)(116-83)(116-39)}}{83}\normalsize = 32.0448952}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116(116-110)(116-83)(116-39)}}{110}\normalsize = 24.17933}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116(116-110)(116-83)(116-39)}}{39}\normalsize = 68.1981103}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 83 и 39 равна 32.0448952
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 83 и 39 равна 24.17933
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 83 и 39 равна 68.1981103
Ссылка на результат
?n1=110&n2=83&n3=39
Найти высоту треугольника со сторонами 122, 92 и 62
Найти высоту треугольника со сторонами 125, 125 и 18
Найти высоту треугольника со сторонами 133, 108 и 86
Найти высоту треугольника со сторонами 148, 135 и 133
Найти высоту треугольника со сторонами 129, 105 и 81
Найти высоту треугольника со сторонами 113, 94 и 25
Найти высоту треугольника со сторонами 125, 125 и 18
Найти высоту треугольника со сторонами 133, 108 и 86
Найти высоту треугольника со сторонами 148, 135 и 133
Найти высоту треугольника со сторонами 129, 105 и 81
Найти высоту треугольника со сторонами 113, 94 и 25