Рассчитать высоту треугольника со сторонами 110, 89 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 89 + 77}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-110)(138-89)(138-77)}}{89}\normalsize = 76.369774}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-110)(138-89)(138-77)}}{110}\normalsize = 61.7900899}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-110)(138-89)(138-77)}}{77}\normalsize = 88.271557}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 89 и 77 равна 76.369774
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 89 и 77 равна 61.7900899
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 89 и 77 равна 88.271557
Ссылка на результат
?n1=110&n2=89&n3=77
Найти высоту треугольника со сторонами 128, 102 и 45
Найти высоту треугольника со сторонами 63, 62 и 56
Найти высоту треугольника со сторонами 87, 60 и 40
Найти высоту треугольника со сторонами 135, 126 и 30
Найти высоту треугольника со сторонами 144, 106 и 51
Найти высоту треугольника со сторонами 142, 107 и 94
Найти высоту треугольника со сторонами 63, 62 и 56
Найти высоту треугольника со сторонами 87, 60 и 40
Найти высоту треугольника со сторонами 135, 126 и 30
Найти высоту треугольника со сторонами 144, 106 и 51
Найти высоту треугольника со сторонами 142, 107 и 94