Рассчитать высоту треугольника со сторонами 110, 90 и 27

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 90 + 27}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-110)(113.5-90)(113.5-27)}}{90}\normalsize = 19.9692348}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-110)(113.5-90)(113.5-27)}}{110}\normalsize = 16.3384649}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-110)(113.5-90)(113.5-27)}}{27}\normalsize = 66.5641161}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 90 и 27 равна 19.9692348
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 90 и 27 равна 16.3384649
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 90 и 27 равна 66.5641161
Ссылка на результат
?n1=110&n2=90&n3=27