Рассчитать высоту треугольника со сторонами 110, 98 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 98 + 75}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-110)(141.5-98)(141.5-75)}}{98}\normalsize = 73.2812499}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-110)(141.5-98)(141.5-75)}}{110}\normalsize = 65.2869317}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-110)(141.5-98)(141.5-75)}}{75}\normalsize = 95.7541665}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 98 и 75 равна 73.2812499
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 98 и 75 равна 65.2869317
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 98 и 75 равна 95.7541665
Ссылка на результат
?n1=110&n2=98&n3=75
Найти высоту треугольника со сторонами 91, 79 и 60
Найти высоту треугольника со сторонами 109, 108 и 39
Найти высоту треугольника со сторонами 149, 148 и 29
Найти высоту треугольника со сторонами 148, 124 и 111
Найти высоту треугольника со сторонами 136, 127 и 51
Найти высоту треугольника со сторонами 104, 89 и 27
Найти высоту треугольника со сторонами 109, 108 и 39
Найти высоту треугольника со сторонами 149, 148 и 29
Найти высоту треугольника со сторонами 148, 124 и 111
Найти высоту треугольника со сторонами 136, 127 и 51
Найти высоту треугольника со сторонами 104, 89 и 27