Рассчитать высоту треугольника со сторонами 111, 101 и 59

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 101 + 59}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-111)(135.5-101)(135.5-59)}}{101}\normalsize = 58.6140293}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-111)(135.5-101)(135.5-59)}}{111}\normalsize = 53.3334861}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-111)(135.5-101)(135.5-59)}}{59}\normalsize = 100.33927}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 101 и 59 равна 58.6140293
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 101 и 59 равна 53.3334861
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 101 и 59 равна 100.33927
Ссылка на результат
?n1=111&n2=101&n3=59