Рассчитать высоту треугольника со сторонами 111, 102 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 102 + 60}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-111)(136.5-102)(136.5-60)}}{102}\normalsize = 59.430106}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-111)(136.5-102)(136.5-60)}}{111}\normalsize = 54.6114488}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-111)(136.5-102)(136.5-60)}}{60}\normalsize = 101.03118}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 102 и 60 равна 59.430106
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 102 и 60 равна 54.6114488
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 102 и 60 равна 101.03118
Ссылка на результат
?n1=111&n2=102&n3=60
Найти высоту треугольника со сторонами 138, 113 и 58
Найти высоту треугольника со сторонами 81, 80 и 11
Найти высоту треугольника со сторонами 114, 94 и 71
Найти высоту треугольника со сторонами 117, 85 и 56
Найти высоту треугольника со сторонами 116, 79 и 77
Найти высоту треугольника со сторонами 123, 90 и 70
Найти высоту треугольника со сторонами 81, 80 и 11
Найти высоту треугольника со сторонами 114, 94 и 71
Найти высоту треугольника со сторонами 117, 85 и 56
Найти высоту треугольника со сторонами 116, 79 и 77
Найти высоту треугольника со сторонами 123, 90 и 70