Рассчитать высоту треугольника со сторонами 111, 104 и 101
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 104 + 101}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-111)(158-104)(158-101)}}{104}\normalsize = 91.9408335}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-111)(158-104)(158-101)}}{111}\normalsize = 86.1427629}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-111)(158-104)(158-101)}}{101}\normalsize = 94.6717493}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 104 и 101 равна 91.9408335
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 104 и 101 равна 86.1427629
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 104 и 101 равна 94.6717493
Ссылка на результат
?n1=111&n2=104&n3=101
Найти высоту треугольника со сторонами 101, 92 и 26
Найти высоту треугольника со сторонами 115, 70 и 61
Найти высоту треугольника со сторонами 76, 47 и 44
Найти высоту треугольника со сторонами 74, 39 и 36
Найти высоту треугольника со сторонами 146, 124 и 88
Найти высоту треугольника со сторонами 117, 99 и 47
Найти высоту треугольника со сторонами 115, 70 и 61
Найти высоту треугольника со сторонами 76, 47 и 44
Найти высоту треугольника со сторонами 74, 39 и 36
Найти высоту треугольника со сторонами 146, 124 и 88
Найти высоту треугольника со сторонами 117, 99 и 47