Рассчитать высоту треугольника со сторонами 111, 105 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 105 + 41}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-111)(128.5-105)(128.5-41)}}{105}\normalsize = 40.9589903}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-111)(128.5-105)(128.5-41)}}{111}\normalsize = 38.7449909}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-111)(128.5-105)(128.5-41)}}{41}\normalsize = 104.894975}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 105 и 41 равна 40.9589903
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 105 и 41 равна 38.7449909
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 105 и 41 равна 104.894975
Ссылка на результат
?n1=111&n2=105&n3=41
Найти высоту треугольника со сторонами 134, 129 и 92
Найти высоту треугольника со сторонами 134, 117 и 80
Найти высоту треугольника со сторонами 140, 79 и 70
Найти высоту треугольника со сторонами 91, 78 и 41
Найти высоту треугольника со сторонами 89, 50 и 46
Найти высоту треугольника со сторонами 136, 90 и 74
Найти высоту треугольника со сторонами 134, 117 и 80
Найти высоту треугольника со сторонами 140, 79 и 70
Найти высоту треугольника со сторонами 91, 78 и 41
Найти высоту треугольника со сторонами 89, 50 и 46
Найти высоту треугольника со сторонами 136, 90 и 74