Рассчитать высоту треугольника со сторонами 111, 107 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 107 + 79}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-111)(148.5-107)(148.5-79)}}{107}\normalsize = 74.9102988}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-111)(148.5-107)(148.5-79)}}{111}\normalsize = 72.2108286}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-111)(148.5-107)(148.5-79)}}{79}\normalsize = 101.460784}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 107 и 79 равна 74.9102988
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 107 и 79 равна 72.2108286
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 107 и 79 равна 101.460784
Ссылка на результат
?n1=111&n2=107&n3=79
Найти высоту треугольника со сторонами 118, 70 и 49
Найти высоту треугольника со сторонами 88, 69 и 43
Найти высоту треугольника со сторонами 59, 43 и 33
Найти высоту треугольника со сторонами 77, 72 и 34
Найти высоту треугольника со сторонами 76, 61 и 53
Найти высоту треугольника со сторонами 102, 76 и 46
Найти высоту треугольника со сторонами 88, 69 и 43
Найти высоту треугольника со сторонами 59, 43 и 33
Найти высоту треугольника со сторонами 77, 72 и 34
Найти высоту треугольника со сторонами 76, 61 и 53
Найти высоту треугольника со сторонами 102, 76 и 46