Рассчитать высоту треугольника со сторонами 111, 108 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 108 + 102}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-111)(160.5-108)(160.5-102)}}{108}\normalsize = 91.4753211}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-111)(160.5-108)(160.5-102)}}{111}\normalsize = 89.0030151}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-111)(160.5-108)(160.5-102)}}{102}\normalsize = 96.8562224}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 108 и 102 равна 91.4753211
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 108 и 102 равна 89.0030151
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 108 и 102 равна 96.8562224
Ссылка на результат
?n1=111&n2=108&n3=102
Найти высоту треугольника со сторонами 135, 133 и 86
Найти высоту треугольника со сторонами 76, 76 и 63
Найти высоту треугольника со сторонами 75, 53 и 28
Найти высоту треугольника со сторонами 146, 129 и 129
Найти высоту треугольника со сторонами 67, 35 и 33
Найти высоту треугольника со сторонами 97, 96 и 73
Найти высоту треугольника со сторонами 76, 76 и 63
Найти высоту треугольника со сторонами 75, 53 и 28
Найти высоту треугольника со сторонами 146, 129 и 129
Найти высоту треугольника со сторонами 67, 35 и 33
Найти высоту треугольника со сторонами 97, 96 и 73