Рассчитать высоту треугольника со сторонами 111, 108 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 108 + 66}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-111)(142.5-108)(142.5-66)}}{108}\normalsize = 63.7395825}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-111)(142.5-108)(142.5-66)}}{111}\normalsize = 62.0168911}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-111)(142.5-108)(142.5-66)}}{66}\normalsize = 104.301135}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 108 и 66 равна 63.7395825
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 108 и 66 равна 62.0168911
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 108 и 66 равна 104.301135
Ссылка на результат
?n1=111&n2=108&n3=66
Найти высоту треугольника со сторонами 116, 96 и 68
Найти высоту треугольника со сторонами 37, 27 и 15
Найти высоту треугольника со сторонами 130, 121 и 74
Найти высоту треугольника со сторонами 131, 98 и 57
Найти высоту треугольника со сторонами 149, 135 и 61
Найти высоту треугольника со сторонами 27, 23 и 19
Найти высоту треугольника со сторонами 37, 27 и 15
Найти высоту треугольника со сторонами 130, 121 и 74
Найти высоту треугольника со сторонами 131, 98 и 57
Найти высоту треугольника со сторонами 149, 135 и 61
Найти высоту треугольника со сторонами 27, 23 и 19