Рассчитать высоту треугольника со сторонами 111, 110 и 87

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 110 + 87}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-111)(154-110)(154-87)}}{110}\normalsize = 80.3333057}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-111)(154-110)(154-87)}}{111}\normalsize = 79.6095822}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-111)(154-110)(154-87)}}{87}\normalsize = 101.570846}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 110 и 87 равна 80.3333057
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 110 и 87 равна 79.6095822
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 110 и 87 равна 101.570846
Ссылка на результат
?n1=111&n2=110&n3=87