Рассчитать высоту треугольника со сторонами 111, 58 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 58 + 54}{2}} \normalsize = 111.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111.5(111.5-111)(111.5-58)(111.5-54)}}{58}\normalsize = 14.2802316}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111.5(111.5-111)(111.5-58)(111.5-54)}}{111}\normalsize = 7.46174264}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111.5(111.5-111)(111.5-58)(111.5-54)}}{54}\normalsize = 15.3380265}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 58 и 54 равна 14.2802316
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 58 и 54 равна 7.46174264
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 58 и 54 равна 15.3380265
Ссылка на результат
?n1=111&n2=58&n3=54
Найти высоту треугольника со сторонами 7, 6 и 3
Найти высоту треугольника со сторонами 146, 132 и 93
Найти высоту треугольника со сторонами 78, 56 и 50
Найти высоту треугольника со сторонами 83, 60 и 35
Найти высоту треугольника со сторонами 139, 120 и 112
Найти высоту треугольника со сторонами 137, 131 и 36
Найти высоту треугольника со сторонами 146, 132 и 93
Найти высоту треугольника со сторонами 78, 56 и 50
Найти высоту треугольника со сторонами 83, 60 и 35
Найти высоту треугольника со сторонами 139, 120 и 112
Найти высоту треугольника со сторонами 137, 131 и 36