Рассчитать высоту треугольника со сторонами 111, 59 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 59 + 58}{2}} \normalsize = 114}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114(114-111)(114-59)(114-58)}}{59}\normalsize = 34.7909586}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114(114-111)(114-59)(114-58)}}{111}\normalsize = 18.4924915}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114(114-111)(114-59)(114-58)}}{58}\normalsize = 35.3908027}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 59 и 58 равна 34.7909586
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 59 и 58 равна 18.4924915
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 59 и 58 равна 35.3908027
Ссылка на результат
?n1=111&n2=59&n3=58
Найти высоту треугольника со сторонами 129, 124 и 82
Найти высоту треугольника со сторонами 113, 89 и 55
Найти высоту треугольника со сторонами 124, 113 и 39
Найти высоту треугольника со сторонами 52, 32 и 21
Найти высоту треугольника со сторонами 126, 100 и 43
Найти высоту треугольника со сторонами 142, 102 и 65
Найти высоту треугольника со сторонами 113, 89 и 55
Найти высоту треугольника со сторонами 124, 113 и 39
Найти высоту треугольника со сторонами 52, 32 и 21
Найти высоту треугольника со сторонами 126, 100 и 43
Найти высоту треугольника со сторонами 142, 102 и 65