Рассчитать высоту треугольника со сторонами 111, 63 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 63 + 59}{2}} \normalsize = 116.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116.5(116.5-111)(116.5-63)(116.5-59)}}{63}\normalsize = 44.5701984}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116.5(116.5-111)(116.5-63)(116.5-59)}}{111}\normalsize = 25.2965991}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116.5(116.5-111)(116.5-63)(116.5-59)}}{59}\normalsize = 47.5919067}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 63 и 59 равна 44.5701984
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 63 и 59 равна 25.2965991
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 63 и 59 равна 47.5919067
Ссылка на результат
?n1=111&n2=63&n3=59
Найти высоту треугольника со сторонами 84, 83 и 47
Найти высоту треугольника со сторонами 148, 132 и 43
Найти высоту треугольника со сторонами 110, 99 и 40
Найти высоту треугольника со сторонами 36, 36 и 4
Найти высоту треугольника со сторонами 42, 29 и 29
Найти высоту треугольника со сторонами 104, 93 и 23
Найти высоту треугольника со сторонами 148, 132 и 43
Найти высоту треугольника со сторонами 110, 99 и 40
Найти высоту треугольника со сторонами 36, 36 и 4
Найти высоту треугольника со сторонами 42, 29 и 29
Найти высоту треугольника со сторонами 104, 93 и 23