Рассчитать высоту треугольника со сторонами 111, 78 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 78 + 42}{2}} \normalsize = 115.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115.5(115.5-111)(115.5-78)(115.5-42)}}{78}\normalsize = 30.6896507}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115.5(115.5-111)(115.5-78)(115.5-42)}}{111}\normalsize = 21.5657005}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115.5(115.5-111)(115.5-78)(115.5-42)}}{42}\normalsize = 56.9950656}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 78 и 42 равна 30.6896507
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 78 и 42 равна 21.5657005
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 78 и 42 равна 56.9950656
Ссылка на результат
?n1=111&n2=78&n3=42
Найти высоту треугольника со сторонами 102, 56 и 53
Найти высоту треугольника со сторонами 105, 91 и 87
Найти высоту треугольника со сторонами 118, 82 и 79
Найти высоту треугольника со сторонами 149, 93 и 79
Найти высоту треугольника со сторонами 135, 111 и 63
Найти высоту треугольника со сторонами 144, 117 и 70
Найти высоту треугольника со сторонами 105, 91 и 87
Найти высоту треугольника со сторонами 118, 82 и 79
Найти высоту треугольника со сторонами 149, 93 и 79
Найти высоту треугольника со сторонами 135, 111 и 63
Найти высоту треугольника со сторонами 144, 117 и 70