Рассчитать высоту треугольника со сторонами 111, 79 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 79 + 54}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-111)(122-79)(122-54)}}{79}\normalsize = 50.1496431}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-111)(122-79)(122-54)}}{111}\normalsize = 35.6920883}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-111)(122-79)(122-54)}}{54}\normalsize = 73.3670704}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 79 и 54 равна 50.1496431
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 79 и 54 равна 35.6920883
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 79 и 54 равна 73.3670704
Ссылка на результат
?n1=111&n2=79&n3=54
Найти высоту треугольника со сторонами 146, 136 и 68
Найти высоту треугольника со сторонами 106, 93 и 90
Найти высоту треугольника со сторонами 144, 127 и 40
Найти высоту треугольника со сторонами 146, 97 и 92
Найти высоту треугольника со сторонами 142, 116 и 74
Найти высоту треугольника со сторонами 100, 81 и 71
Найти высоту треугольника со сторонами 106, 93 и 90
Найти высоту треугольника со сторонами 144, 127 и 40
Найти высоту треугольника со сторонами 146, 97 и 92
Найти высоту треугольника со сторонами 142, 116 и 74
Найти высоту треугольника со сторонами 100, 81 и 71