Рассчитать высоту треугольника со сторонами 111, 80 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 80 + 35}{2}} \normalsize = 113}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113(113-111)(113-80)(113-35)}}{80}\normalsize = 19.0677083}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113(113-111)(113-80)(113-35)}}{111}\normalsize = 13.7424925}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113(113-111)(113-80)(113-35)}}{35}\normalsize = 43.5833333}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 80 и 35 равна 19.0677083
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 80 и 35 равна 13.7424925
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 80 и 35 равна 43.5833333
Ссылка на результат
?n1=111&n2=80&n3=35
Найти высоту треугольника со сторонами 118, 112 и 49
Найти высоту треугольника со сторонами 114, 96 и 38
Найти высоту треугольника со сторонами 123, 66 и 62
Найти высоту треугольника со сторонами 50, 49 и 21
Найти высоту треугольника со сторонами 137, 93 и 54
Найти высоту треугольника со сторонами 142, 138 и 108
Найти высоту треугольника со сторонами 114, 96 и 38
Найти высоту треугольника со сторонами 123, 66 и 62
Найти высоту треугольника со сторонами 50, 49 и 21
Найти высоту треугольника со сторонами 137, 93 и 54
Найти высоту треугольника со сторонами 142, 138 и 108