Рассчитать высоту треугольника со сторонами 111, 83 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 83 + 40}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-111)(117-83)(117-40)}}{83}\normalsize = 32.6667012}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-111)(117-83)(117-40)}}{111}\normalsize = 24.4264523}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-111)(117-83)(117-40)}}{40}\normalsize = 67.783405}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 83 и 40 равна 32.6667012
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 83 и 40 равна 24.4264523
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 83 и 40 равна 67.783405
Ссылка на результат
?n1=111&n2=83&n3=40
Найти высоту треугольника со сторонами 100, 95 и 75
Найти высоту треугольника со сторонами 137, 107 и 48
Найти высоту треугольника со сторонами 148, 95 и 90
Найти высоту треугольника со сторонами 141, 86 и 64
Найти высоту треугольника со сторонами 37, 37 и 22
Найти высоту треугольника со сторонами 150, 137 и 113
Найти высоту треугольника со сторонами 137, 107 и 48
Найти высоту треугольника со сторонами 148, 95 и 90
Найти высоту треугольника со сторонами 141, 86 и 64
Найти высоту треугольника со сторонами 37, 37 и 22
Найти высоту треугольника со сторонами 150, 137 и 113