Рассчитать высоту треугольника со сторонами 111, 83 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 83 + 43}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-111)(118.5-83)(118.5-43)}}{83}\normalsize = 37.1902727}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-111)(118.5-83)(118.5-43)}}{111}\normalsize = 27.8089426}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-111)(118.5-83)(118.5-43)}}{43}\normalsize = 71.7858752}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 83 и 43 равна 37.1902727
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 83 и 43 равна 27.8089426
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 83 и 43 равна 71.7858752
Ссылка на результат
?n1=111&n2=83&n3=43
Найти высоту треугольника со сторонами 134, 112 и 28
Найти высоту треугольника со сторонами 116, 102 и 55
Найти высоту треугольника со сторонами 41, 38 и 26
Найти высоту треугольника со сторонами 88, 72 и 28
Найти высоту треугольника со сторонами 132, 82 и 51
Найти высоту треугольника со сторонами 142, 142 и 66
Найти высоту треугольника со сторонами 116, 102 и 55
Найти высоту треугольника со сторонами 41, 38 и 26
Найти высоту треугольника со сторонами 88, 72 и 28
Найти высоту треугольника со сторонами 132, 82 и 51
Найти высоту треугольника со сторонами 142, 142 и 66