Рассчитать высоту треугольника со сторонами 111, 87 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 87 + 63}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-111)(130.5-87)(130.5-63)}}{87}\normalsize = 62.8390802}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-111)(130.5-87)(130.5-63)}}{111}\normalsize = 49.252252}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-111)(130.5-87)(130.5-63)}}{63}\normalsize = 86.7777774}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 87 и 63 равна 62.8390802
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 87 и 63 равна 49.252252
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 87 и 63 равна 86.7777774
Ссылка на результат
?n1=111&n2=87&n3=63
Найти высоту треугольника со сторонами 113, 102 и 27
Найти высоту треугольника со сторонами 103, 95 и 80
Найти высоту треугольника со сторонами 107, 102 и 37
Найти высоту треугольника со сторонами 117, 117 и 37
Найти высоту треугольника со сторонами 137, 117 и 92
Найти высоту треугольника со сторонами 99, 79 и 29
Найти высоту треугольника со сторонами 103, 95 и 80
Найти высоту треугольника со сторонами 107, 102 и 37
Найти высоту треугольника со сторонами 117, 117 и 37
Найти высоту треугольника со сторонами 137, 117 и 92
Найти высоту треугольника со сторонами 99, 79 и 29