Рассчитать высоту треугольника со сторонами 111, 88 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 88 + 33}{2}} \normalsize = 116}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116(116-111)(116-88)(116-33)}}{88}\normalsize = 26.3863538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116(116-111)(116-88)(116-33)}}{111}\normalsize = 20.9189112}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116(116-111)(116-88)(116-33)}}{33}\normalsize = 70.3636103}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 88 и 33 равна 26.3863538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 88 и 33 равна 20.9189112
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 88 и 33 равна 70.3636103
Ссылка на результат
?n1=111&n2=88&n3=33
Найти высоту треугольника со сторонами 93, 91 и 63
Найти высоту треугольника со сторонами 99, 64 и 45
Найти высоту треугольника со сторонами 138, 122 и 47
Найти высоту треугольника со сторонами 97, 73 и 59
Найти высоту треугольника со сторонами 86, 59 и 40
Найти высоту треугольника со сторонами 89, 84 и 39
Найти высоту треугольника со сторонами 99, 64 и 45
Найти высоту треугольника со сторонами 138, 122 и 47
Найти высоту треугольника со сторонами 97, 73 и 59
Найти высоту треугольника со сторонами 86, 59 и 40
Найти высоту треугольника со сторонами 89, 84 и 39