Рассчитать высоту треугольника со сторонами 111, 90 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 90 + 36}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-111)(118.5-90)(118.5-36)}}{90}\normalsize = 32.123784}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-111)(118.5-90)(118.5-36)}}{111}\normalsize = 26.0463114}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-111)(118.5-90)(118.5-36)}}{36}\normalsize = 80.3094601}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 90 и 36 равна 32.123784
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 90 и 36 равна 26.0463114
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 90 и 36 равна 80.3094601
Ссылка на результат
?n1=111&n2=90&n3=36
Найти высоту треугольника со сторонами 139, 139 и 101
Найти высоту треугольника со сторонами 80, 66 и 45
Найти высоту треугольника со сторонами 146, 107 и 47
Найти высоту треугольника со сторонами 134, 121 и 81
Найти высоту треугольника со сторонами 150, 126 и 26
Найти высоту треугольника со сторонами 83, 77 и 41
Найти высоту треугольника со сторонами 80, 66 и 45
Найти высоту треугольника со сторонами 146, 107 и 47
Найти высоту треугольника со сторонами 134, 121 и 81
Найти высоту треугольника со сторонами 150, 126 и 26
Найти высоту треугольника со сторонами 83, 77 и 41