Рассчитать высоту треугольника со сторонами 111, 97 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 97 + 26}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-111)(117-97)(117-26)}}{97}\normalsize = 23.3057193}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-111)(117-97)(117-26)}}{111}\normalsize = 20.3662592}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-111)(117-97)(117-26)}}{26}\normalsize = 86.9482605}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 97 и 26 равна 23.3057193
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 97 и 26 равна 20.3662592
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 97 и 26 равна 86.9482605
Ссылка на результат
?n1=111&n2=97&n3=26
Найти высоту треугольника со сторонами 108, 96 и 54
Найти высоту треугольника со сторонами 98, 84 и 31
Найти высоту треугольника со сторонами 132, 117 и 69
Найти высоту треугольника со сторонами 80, 54 и 53
Найти высоту треугольника со сторонами 84, 56 и 48
Найти высоту треугольника со сторонами 67, 50 и 45
Найти высоту треугольника со сторонами 98, 84 и 31
Найти высоту треугольника со сторонами 132, 117 и 69
Найти высоту треугольника со сторонами 80, 54 и 53
Найти высоту треугольника со сторонами 84, 56 и 48
Найти высоту треугольника со сторонами 67, 50 и 45