Рассчитать высоту треугольника со сторонами 111, 97 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 97 + 58}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-111)(133-97)(133-58)}}{97}\normalsize = 57.9531844}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-111)(133-97)(133-58)}}{111}\normalsize = 50.6437737}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-111)(133-97)(133-58)}}{58}\normalsize = 96.9217049}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 97 и 58 равна 57.9531844
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 97 и 58 равна 50.6437737
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 97 и 58 равна 96.9217049
Ссылка на результат
?n1=111&n2=97&n3=58
Найти высоту треугольника со сторонами 101, 92 и 90
Найти высоту треугольника со сторонами 53, 42 и 22
Найти высоту треугольника со сторонами 136, 134 и 31
Найти высоту треугольника со сторонами 123, 84 и 62
Найти высоту треугольника со сторонами 88, 72 и 66
Найти высоту треугольника со сторонами 109, 104 и 47
Найти высоту треугольника со сторонами 53, 42 и 22
Найти высоту треугольника со сторонами 136, 134 и 31
Найти высоту треугольника со сторонами 123, 84 и 62
Найти высоту треугольника со сторонами 88, 72 и 66
Найти высоту треугольника со сторонами 109, 104 и 47