Рассчитать высоту треугольника со сторонами 111, 98 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 98 + 33}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-111)(121-98)(121-33)}}{98}\normalsize = 31.9375693}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-111)(121-98)(121-33)}}{111}\normalsize = 28.1971332}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-111)(121-98)(121-33)}}{33}\normalsize = 94.8449026}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 98 и 33 равна 31.9375693
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 98 и 33 равна 28.1971332
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 98 и 33 равна 94.8449026
Ссылка на результат
?n1=111&n2=98&n3=33
Найти высоту треугольника со сторонами 131, 115 и 50
Найти высоту треугольника со сторонами 98, 80 и 44
Найти высоту треугольника со сторонами 125, 105 и 56
Найти высоту треугольника со сторонами 137, 126 и 42
Найти высоту треугольника со сторонами 141, 136 и 103
Найти высоту треугольника со сторонами 120, 83 и 75
Найти высоту треугольника со сторонами 98, 80 и 44
Найти высоту треугольника со сторонами 125, 105 и 56
Найти высоту треугольника со сторонами 137, 126 и 42
Найти высоту треугольника со сторонами 141, 136 и 103
Найти высоту треугольника со сторонами 120, 83 и 75