Рассчитать высоту треугольника со сторонами 112, 103 и 70

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 103 + 70}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-112)(142.5-103)(142.5-70)}}{103}\normalsize = 68.5042749}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-112)(142.5-103)(142.5-70)}}{112}\normalsize = 62.9994671}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-112)(142.5-103)(142.5-70)}}{70}\normalsize = 100.799147}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 103 и 70 равна 68.5042749
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 103 и 70 равна 62.9994671
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 103 и 70 равна 100.799147
Ссылка на результат
?n1=112&n2=103&n3=70