Рассчитать высоту треугольника со сторонами 112, 105 и 99
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 105 + 99}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-112)(158-105)(158-99)}}{105}\normalsize = 90.805488}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-112)(158-105)(158-99)}}{112}\normalsize = 85.130145}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-112)(158-105)(158-99)}}{99}\normalsize = 96.3088509}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 105 и 99 равна 90.805488
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 105 и 99 равна 85.130145
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 105 и 99 равна 96.3088509
Ссылка на результат
?n1=112&n2=105&n3=99
Найти высоту треугольника со сторонами 120, 74 и 69
Найти высоту треугольника со сторонами 141, 138 и 93
Найти высоту треугольника со сторонами 92, 84 и 39
Найти высоту треугольника со сторонами 138, 135 и 36
Найти высоту треугольника со сторонами 123, 102 и 93
Найти высоту треугольника со сторонами 147, 146 и 142
Найти высоту треугольника со сторонами 141, 138 и 93
Найти высоту треугольника со сторонами 92, 84 и 39
Найти высоту треугольника со сторонами 138, 135 и 36
Найти высоту треугольника со сторонами 123, 102 и 93
Найти высоту треугольника со сторонами 147, 146 и 142