Рассчитать высоту треугольника со сторонами 112, 109 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 109 + 75}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-112)(148-109)(148-75)}}{109}\normalsize = 71.4626866}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-112)(148-109)(148-75)}}{112}\normalsize = 69.5485075}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-112)(148-109)(148-75)}}{75}\normalsize = 103.859105}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 109 и 75 равна 71.4626866
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 109 и 75 равна 69.5485075
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 109 и 75 равна 103.859105
Ссылка на результат
?n1=112&n2=109&n3=75
Найти высоту треугольника со сторонами 104, 82 и 29
Найти высоту треугольника со сторонами 122, 100 и 51
Найти высоту треугольника со сторонами 150, 109 и 103
Найти высоту треугольника со сторонами 122, 122 и 55
Найти высоту треугольника со сторонами 100, 89 и 89
Найти высоту треугольника со сторонами 56, 48 и 29
Найти высоту треугольника со сторонами 122, 100 и 51
Найти высоту треугольника со сторонами 150, 109 и 103
Найти высоту треугольника со сторонами 122, 122 и 55
Найти высоту треугольника со сторонами 100, 89 и 89
Найти высоту треугольника со сторонами 56, 48 и 29