Рассчитать высоту треугольника со сторонами 112, 111 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 111 + 21}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-112)(122-111)(122-21)}}{111}\normalsize = 20.9770282}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-112)(122-111)(122-21)}}{112}\normalsize = 20.7897333}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-112)(122-111)(122-21)}}{21}\normalsize = 110.878578}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 111 и 21 равна 20.9770282
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 111 и 21 равна 20.7897333
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 111 и 21 равна 110.878578
Ссылка на результат
?n1=112&n2=111&n3=21
Найти высоту треугольника со сторонами 109, 103 и 36
Найти высоту треугольника со сторонами 129, 109 и 82
Найти высоту треугольника со сторонами 150, 147 и 82
Найти высоту треугольника со сторонами 104, 98 и 71
Найти высоту треугольника со сторонами 139, 126 и 36
Найти высоту треугольника со сторонами 109, 106 и 17
Найти высоту треугольника со сторонами 129, 109 и 82
Найти высоту треугольника со сторонами 150, 147 и 82
Найти высоту треугольника со сторонами 104, 98 и 71
Найти высоту треугольника со сторонами 139, 126 и 36
Найти высоту треугольника со сторонами 109, 106 и 17