Рассчитать высоту треугольника со сторонами 112, 58 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 58 + 55}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-112)(112.5-58)(112.5-55)}}{58}\normalsize = 14.4775622}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-112)(112.5-58)(112.5-55)}}{112}\normalsize = 7.49730899}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-112)(112.5-58)(112.5-55)}}{55}\normalsize = 15.2672474}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 58 и 55 равна 14.4775622
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 58 и 55 равна 7.49730899
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 58 и 55 равна 15.2672474
Ссылка на результат
?n1=112&n2=58&n3=55
Найти высоту треугольника со сторонами 123, 122 и 61
Найти высоту треугольника со сторонами 89, 72 и 67
Найти высоту треугольника со сторонами 133, 116 и 71
Найти высоту треугольника со сторонами 120, 97 и 46
Найти высоту треугольника со сторонами 91, 69 и 26
Найти высоту треугольника со сторонами 137, 90 и 65
Найти высоту треугольника со сторонами 89, 72 и 67
Найти высоту треугольника со сторонами 133, 116 и 71
Найти высоту треугольника со сторонами 120, 97 и 46
Найти высоту треугольника со сторонами 91, 69 и 26
Найти высоту треугольника со сторонами 137, 90 и 65