Рассчитать высоту треугольника со сторонами 112, 70 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 70 + 54}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-112)(118-70)(118-54)}}{70}\normalsize = 42.136571}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-112)(118-70)(118-54)}}{112}\normalsize = 26.3353568}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-112)(118-70)(118-54)}}{54}\normalsize = 54.6214809}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 70 и 54 равна 42.136571
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 70 и 54 равна 26.3353568
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 70 и 54 равна 54.6214809
Ссылка на результат
?n1=112&n2=70&n3=54
Найти высоту треугольника со сторонами 139, 128 и 85
Найти высоту треугольника со сторонами 125, 84 и 54
Найти высоту треугольника со сторонами 147, 103 и 79
Найти высоту треугольника со сторонами 105, 99 и 22
Найти высоту треугольника со сторонами 68, 55 и 20
Найти высоту треугольника со сторонами 110, 83 и 28
Найти высоту треугольника со сторонами 125, 84 и 54
Найти высоту треугольника со сторонами 147, 103 и 79
Найти высоту треугольника со сторонами 105, 99 и 22
Найти высоту треугольника со сторонами 68, 55 и 20
Найти высоту треугольника со сторонами 110, 83 и 28