Рассчитать высоту треугольника со сторонами 112, 75 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 75 + 38}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-112)(112.5-75)(112.5-38)}}{75}\normalsize = 10.5711873}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-112)(112.5-75)(112.5-38)}}{112}\normalsize = 7.07892004}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-112)(112.5-75)(112.5-38)}}{38}\normalsize = 20.8641854}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 75 и 38 равна 10.5711873
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 75 и 38 равна 7.07892004
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 75 и 38 равна 20.8641854
Ссылка на результат
?n1=112&n2=75&n3=38
Найти высоту треугольника со сторонами 144, 143 и 20
Найти высоту треугольника со сторонами 103, 89 и 88
Найти высоту треугольника со сторонами 102, 64 и 50
Найти высоту треугольника со сторонами 129, 82 и 71
Найти высоту треугольника со сторонами 135, 131 и 61
Найти высоту треугольника со сторонами 146, 117 и 61
Найти высоту треугольника со сторонами 103, 89 и 88
Найти высоту треугольника со сторонами 102, 64 и 50
Найти высоту треугольника со сторонами 129, 82 и 71
Найти высоту треугольника со сторонами 135, 131 и 61
Найти высоту треугольника со сторонами 146, 117 и 61