Рассчитать высоту треугольника со сторонами 112, 80 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 80 + 43}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-112)(117.5-80)(117.5-43)}}{80}\normalsize = 33.5918604}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-112)(117.5-80)(117.5-43)}}{112}\normalsize = 23.994186}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-112)(117.5-80)(117.5-43)}}{43}\normalsize = 62.4964845}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 80 и 43 равна 33.5918604
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 80 и 43 равна 23.994186
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 80 и 43 равна 62.4964845
Ссылка на результат
?n1=112&n2=80&n3=43
Найти высоту треугольника со сторонами 84, 69 и 48
Найти высоту треугольника со сторонами 88, 85 и 80
Найти высоту треугольника со сторонами 73, 55 и 37
Найти высоту треугольника со сторонами 134, 87 и 56
Найти высоту треугольника со сторонами 138, 138 и 113
Найти высоту треугольника со сторонами 135, 94 и 81
Найти высоту треугольника со сторонами 88, 85 и 80
Найти высоту треугольника со сторонами 73, 55 и 37
Найти высоту треугольника со сторонами 134, 87 и 56
Найти высоту треугольника со сторонами 138, 138 и 113
Найти высоту треугольника со сторонами 135, 94 и 81