Рассчитать высоту треугольника со сторонами 112, 86 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 86 + 32}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-112)(115-86)(115-32)}}{86}\normalsize = 21.1923509}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-112)(115-86)(115-32)}}{112}\normalsize = 16.272698}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-112)(115-86)(115-32)}}{32}\normalsize = 56.9544431}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 86 и 32 равна 21.1923509
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 86 и 32 равна 16.272698
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 86 и 32 равна 56.9544431
Ссылка на результат
?n1=112&n2=86&n3=32
Найти высоту треугольника со сторонами 77, 56 и 25
Найти высоту треугольника со сторонами 131, 131 и 13
Найти высоту треугольника со сторонами 111, 94 и 88
Найти высоту треугольника со сторонами 118, 113 и 84
Найти высоту треугольника со сторонами 112, 85 и 75
Найти высоту треугольника со сторонами 105, 84 и 79
Найти высоту треугольника со сторонами 131, 131 и 13
Найти высоту треугольника со сторонами 111, 94 и 88
Найти высоту треугольника со сторонами 118, 113 и 84
Найти высоту треугольника со сторонами 112, 85 и 75
Найти высоту треугольника со сторонами 105, 84 и 79