Рассчитать высоту треугольника со сторонами 112, 93 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 93 + 36}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-112)(120.5-93)(120.5-36)}}{93}\normalsize = 33.1775823}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-112)(120.5-93)(120.5-36)}}{112}\normalsize = 27.5492424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-112)(120.5-93)(120.5-36)}}{36}\normalsize = 85.7087542}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 93 и 36 равна 33.1775823
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 93 и 36 равна 27.5492424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 93 и 36 равна 85.7087542
Ссылка на результат
?n1=112&n2=93&n3=36
Найти высоту треугольника со сторонами 143, 141 и 76
Найти высоту треугольника со сторонами 135, 128 и 106
Найти высоту треугольника со сторонами 114, 87 и 40
Найти высоту треугольника со сторонами 100, 94 и 54
Найти высоту треугольника со сторонами 129, 124 и 95
Найти высоту треугольника со сторонами 117, 103 и 25
Найти высоту треугольника со сторонами 135, 128 и 106
Найти высоту треугольника со сторонами 114, 87 и 40
Найти высоту треугольника со сторонами 100, 94 и 54
Найти высоту треугольника со сторонами 129, 124 и 95
Найти высоту треугольника со сторонами 117, 103 и 25