Рассчитать высоту треугольника со сторонами 112, 99 и 52

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 99 + 52}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-112)(131.5-99)(131.5-52)}}{99}\normalsize = 51.9996269}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-112)(131.5-99)(131.5-52)}}{112}\normalsize = 45.963956}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-112)(131.5-99)(131.5-52)}}{52}\normalsize = 98.9992898}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 99 и 52 равна 51.9996269
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 99 и 52 равна 45.963956
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 99 и 52 равна 98.9992898
Ссылка на результат
?n1=112&n2=99&n3=52