Рассчитать высоту треугольника со сторонами 112, 99 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 99 + 62}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-112)(136.5-99)(136.5-62)}}{99}\normalsize = 61.7501389}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-112)(136.5-99)(136.5-62)}}{112}\normalsize = 54.5827121}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-112)(136.5-99)(136.5-62)}}{62}\normalsize = 98.6010283}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 99 и 62 равна 61.7501389
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 99 и 62 равна 54.5827121
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 99 и 62 равна 98.6010283
Ссылка на результат
?n1=112&n2=99&n3=62
Найти высоту треугольника со сторонами 121, 82 и 60
Найти высоту треугольника со сторонами 137, 120 и 67
Найти высоту треугольника со сторонами 140, 103 и 39
Найти высоту треугольника со сторонами 103, 98 и 33
Найти высоту треугольника со сторонами 80, 57 и 56
Найти высоту треугольника со сторонами 135, 114 и 33
Найти высоту треугольника со сторонами 137, 120 и 67
Найти высоту треугольника со сторонами 140, 103 и 39
Найти высоту треугольника со сторонами 103, 98 и 33
Найти высоту треугольника со сторонами 80, 57 и 56
Найти высоту треугольника со сторонами 135, 114 и 33