Рассчитать высоту треугольника со сторонами 113, 101 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 101 + 23}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-113)(118.5-101)(118.5-23)}}{101}\normalsize = 20.6666389}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-113)(118.5-101)(118.5-23)}}{113}\normalsize = 18.4719516}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-113)(118.5-101)(118.5-23)}}{23}\normalsize = 90.7535014}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 101 и 23 равна 20.6666389
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 101 и 23 равна 18.4719516
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 101 и 23 равна 90.7535014
Ссылка на результат
?n1=113&n2=101&n3=23
Найти высоту треугольника со сторонами 89, 71 и 50
Найти высоту треугольника со сторонами 98, 90 и 11
Найти высоту треугольника со сторонами 73, 71 и 43
Найти высоту треугольника со сторонами 75, 75 и 14
Найти высоту треугольника со сторонами 97, 89 и 30
Найти высоту треугольника со сторонами 62, 59 и 39
Найти высоту треугольника со сторонами 98, 90 и 11
Найти высоту треугольника со сторонами 73, 71 и 43
Найти высоту треугольника со сторонами 75, 75 и 14
Найти высоту треугольника со сторонами 97, 89 и 30
Найти высоту треугольника со сторонами 62, 59 и 39