Рассчитать высоту треугольника со сторонами 113, 101 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 101 + 82}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-113)(148-101)(148-82)}}{101}\normalsize = 79.3769484}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-113)(148-101)(148-82)}}{113}\normalsize = 70.9475379}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-113)(148-101)(148-82)}}{82}\normalsize = 97.7691681}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 101 и 82 равна 79.3769484
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 101 и 82 равна 70.9475379
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 101 и 82 равна 97.7691681
Ссылка на результат
?n1=113&n2=101&n3=82
Найти высоту треугольника со сторонами 150, 77 и 76
Найти высоту треугольника со сторонами 106, 75 и 61
Найти высоту треугольника со сторонами 139, 132 и 14
Найти высоту треугольника со сторонами 83, 79 и 29
Найти высоту треугольника со сторонами 93, 74 и 58
Найти высоту треугольника со сторонами 119, 118 и 51
Найти высоту треугольника со сторонами 106, 75 и 61
Найти высоту треугольника со сторонами 139, 132 и 14
Найти высоту треугольника со сторонами 83, 79 и 29
Найти высоту треугольника со сторонами 93, 74 и 58
Найти высоту треугольника со сторонами 119, 118 и 51