Рассчитать высоту треугольника со сторонами 113, 103 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 103 + 40}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-113)(128-103)(128-40)}}{103}\normalsize = 39.9075187}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-113)(128-103)(128-40)}}{113}\normalsize = 36.3758799}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-113)(128-103)(128-40)}}{40}\normalsize = 102.761861}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 103 и 40 равна 39.9075187
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 103 и 40 равна 36.3758799
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 103 и 40 равна 102.761861
Ссылка на результат
?n1=113&n2=103&n3=40
Найти высоту треугольника со сторонами 90, 79 и 32
Найти высоту треугольника со сторонами 140, 139 и 118
Найти высоту треугольника со сторонами 137, 107 и 78
Найти высоту треугольника со сторонами 78, 69 и 39
Найти высоту треугольника со сторонами 141, 110 и 107
Найти высоту треугольника со сторонами 116, 110 и 71
Найти высоту треугольника со сторонами 140, 139 и 118
Найти высоту треугольника со сторонами 137, 107 и 78
Найти высоту треугольника со сторонами 78, 69 и 39
Найти высоту треугольника со сторонами 141, 110 и 107
Найти высоту треугольника со сторонами 116, 110 и 71