Рассчитать высоту треугольника со сторонами 113, 106 и 67

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 106 + 67}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-113)(143-106)(143-67)}}{106}\normalsize = 65.5330581}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-113)(143-106)(143-67)}}{113}\normalsize = 61.4734881}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-113)(143-106)(143-67)}}{67}\normalsize = 103.679167}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 106 и 67 равна 65.5330581
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 106 и 67 равна 61.4734881
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 106 и 67 равна 103.679167
Ссылка на результат
?n1=113&n2=106&n3=67